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Testing	ALE	code	FLAG	with	analytical	self‐
similar	solutions	of	2D	magnetized	implosion.	

A.	Beresnyak(1),	T.	Gianakon(2),	C.	Rousculp(2),	J.H.	Cooley(2),	J.	Giuliani(1)	
1‐NRL;	2‐LANL	

	

Introduction	
	

FLAG	 is	 an	 Arbitrary	 Lagrange	 Eulerian	 (ALE)	 code	 developed	 at	 Los	 Alamos	
National	Laboratory	as	part	of	Advanced	Simulation	and	Computing	(ASC)	program.		
Resistive	Magneto‐hydrodynamics	 (MHD)	 is	 under	 active	 development	within	 the	
code	 for	 the	purpose	of	modeling	experiments	on	 the	Sandia	Z‐machine,	modeling	
and	design	of	 flux	 compression	 generators	 (FCG),	modeling	 of	 FCG	 loads	 used	 for	
proposed	 EOS	 experiments	 to	 be	 funded	 by	 the	 LANL	 Science	 Campaigns,	 and	
modeling	 of	 exploding	 wire	 configurations.	 	 The	 intent	 of	 this	 LANL/NRL	
collaboration	is	to	use	the	analytic	MHD	test	problems	developed	by	NRL	in	Ref.	[1]	
to	 facilitate	 verification	 and	 improvement	 of	 the	 ideal	MHD	 package	within	 FLAG	
and	for	NRL	to	explore	usage	of	FLAG	for	their	applications.	One	topic	of	interest	for	
NRL	is	plasma	devices	with	complex	boundaries,	such	as	dense	plasma	focus	(DPF).	
Calculations	 can	 be	 improved	 by	 using	 the	 ability	 of	 FLAG	 to	 generate	 complex	
meshes	and	deal	with	plasma/vacuum	interface.	NRL	is	also	particularly	interested	
in	the	stability	of	Problem	3	since	many	codes	have	had	limited	success	reproducing	
the	 results	 due	 to	 either	 numerical	 or	 actual	 instability.	 As	 a	 result	 of	 this	
collaboration,	improvements	in	the	formulation	and	implementation	of	the	magnetic	
stress	 tensor	 (JxB	 forces	 in	 the	momentum	 equation)	 have	 been	made	 as	well	 as	
improvements	 to	 the	 advection	 (high	 order,	 low	 order,	 FCT)	 of	 the	 MHD	 state	
variables.		Confidence	in	the	implementation	of	MHD	in	FLAG	code	has	increased	for	
user	applications	due	to	this	collaboration.	
	
Velikovich	 et	 al.,	 [1]	 have	 published	 a	 self‐similar	 2D	 solution	 of	 a	 collapsing	
magnetized	z‐pinch,	extension	of	the	classical	Noh	problem	of	infinite‐Mach	number	
collapse	 to	 MHD.	 We	 refer	 this	 below	 as	 "Problem	 1".	 These	 involve	 constant	
implosion	velocity,	as	in	classic	Noh,	but	density	depending	on	radius	as	r^2*	and	
magnetic	 field	 depending	 on	 radius	 as	 r^.	 Infinite	 number	 of	 solutions	 exists	 for	
different	 betas	 and	 gas	 constants	 gamma	 ().	 The	 above	 authors	 also	 constructed	
two	other	solutions	that	are	designated	as	"Problem	2"	and	"Problem	3".	Problem	1	
has	zero	out‐of	plane	field	Bz	and	only	an	azimuthal	field	B.	Problem	2	has	a	stiffer	
equation	 of	 state	 with	 =2	 and	 both	 Bz	 and	 B.	 Problem	 3	 also	 has	 both	 Bz	 and	
Bbut	 a	 very	 soft	 equation	 of	 state	 with	 =1.1	 and	 high	 Alfvenic	 Mach	 number	
(v/v_A).	The	self‐similar	solutions	were	constructed	to	have	a	shock	speed	the	same	
for	 all	 three	 cases	 and	 equal	 to	 10^7	 cm/s.	We	 typically	 compare	 numerics	with	
analytical	solution	at	30ns	when	the	shock	is	at	r=0.3cm.	
	



	
	
	

FLAG	has	flexibility	regarding	the	geometry	of	the	mesh	(1D,	2D	axially	symmetric,	
2D	Cartesian,	and	3D	Cartesian)	as	well	as	the	actual	mesh.	Furthermore,	the	mesh	
can	move	with	the	fluid	(Lagrange),	or	be	fixed	in	space	(Eulerian),	or	be	
intermediate	between	the	two	(ALE).		In	addition	to	being	able	to	run	in	2D	
Cartesian	geometry	with	ALE,	FLAG	can	be	run	in	2D	R‐Z	cylindrical	geometry	as	
well.	This	is	referred	to	in	the	input	as	“axis2”	option.	The	Lagrangian,	staggered‐
grid	hydro	scheme	present	in	FLAG	utilizes	a	discretization	scheme	that	converts	
the	cylindrical	differential	operators	into	Cartesian	form	by	appropriate	choice	of	
the	point	masses.	This	is	often	referred	to	as	an	area‐weight	scheme	and	is	
discussed	in	depth	elsewhere	(see	Refs.	[2],	[3]).	The	magnetic	JxB	forces	contribute	
to	the	momentum	equation	as	the	divergence	of	a	stress	tensor	quantity	in	a	similar	
fashion	as	solid	mechanics.	In	ideal	MHD,	magnetic	flux	is	constrained	to	move	with	
the	Lagrange	fluid.			Additionally,	results	from	the	Godunoff	based	finite	volume	
code	ATHENA	code	are	presented.	
	
In	this	round	of	testing,	three	types	of	grid/geometry	were	considered	(see	Fig.	1)	:	
1)	“fixed‐	grid”	is	a	regular	rectangular	grid	in	2D	Cartesian	with	Eulerian	mesh	
motion,	similar	to	fixed	grids	used	in	Eulerian	codes;	2)	“box‐grid”	is	2D	Cartesian	
having	a	box	in	the	center	and	r‐	grid	on	the	outside,	with	Lagrange	mesh	motion;	
and	3)	“axis2‐grid”	is	a	regular	Cartesian	mesh	in	2D	axially	symmetric	geometry	
with	Lagrange	mesh	motion.		The	resolution	of	fixed	grid	was	constant	while	the	
resolution	for	box‐grid	and	axis2‐grid	was	increasing	during	the	simulation	due	to	
the	Lagrange	fluid	motion,	in	a	sort‐of	"natural	grid	refinement."		For	“fixed‐grid”	
and	for	“box‐grid”	Bz	is	oriented	out	of	the	plane	of	the	2D	mesh	and	B	is	in	the	
plane	of	the	mesh.	For	“axis2‐grid”	Bz	is	oriented	in	the	plane	of	the	mesh	and	B	is	
normal	to	the	plane	of	the	mesh.		
	
	
Section	2	presents	a	qualitative	and	quantitative	comparison	of	results	for	the	three	
problems	from	both	FLAG	and	ATHENA.		The	intent	is	to	look	for	symmetry	
breaking	and	mesh	imprinting	since	the	mesh	is	in	general	not	aligned	with	the	
radial	inward	flow.	The	section	includes	a	detailed	comparison	with	the	analytic	
solution.		Concluding	remarks	are	in	Section	3.		
	

	
	
	
	



	
	

Results	
	
In	successful	runs	that	we	refer	to	below	resolution	was:	
	
	
	

dx	,	cm	 0.3cm/dx	

Fixed	grid	 	 	
Prob1,	Prob2	 0.0093	 32	
Prob3	
		

0.025	 12	

Box	grid	at	t=30ns,	center	 	
Prob1,	Prob2	 0.0067	 45	
Prob3	
	

0.048	 6	

Axis2	grid	 	
Prob1,	Prob2	 0.06,0.03	 50,100	
Prob	3,	Uniform	 0.06	 151	
Prob	3,	Ratio		 =0.95	 50	
	
	
Problem	1	is	observed	to	have	artifacts	in	the	upstream	(shocked)	domain	with	both	
FLAG	fixed‐grid	and	FLAG	box‐grid	as	illustrated	in	Figure	2.	The	solution	for	
Problem	2	looked	normal,	axisymmetric,	having	no	numerical	artifacts	as	illustrated	
in	Figure	3.		Problem	3	was	highly	non‐axisymmetric	with	strong	m=4	perturbation	
due	to	the	grid,	as	illustrated	in	Figure	4.			At	higher	resolution,	FLAG	simulations	of	
Problem	3	developed	numerical	instabilities,	both	upstream	and	downstream	of	the	
shock.		This	typically	ended	the	simulation	because	of	the	time	step	constraints.		All	
three	problems	were	run	with	Axis2‐grid	in	FLAG	and	the	results	appear	credible.	
Detailed	comparisons	follow	in	Figures	5‐8	for	Problem1,	Figures	9‐12	for	Problem	
2,	and	Figures	13‐16	for	Problem	3	with	FLAG	fixed‐grid,	FLAG	box‐grid,	FLAG	
axis2‐grid,	and	ATHENA.				
	
		
Magnetic	Noh	Problem	1:	
	
Figure	5	shows	the	results	for	FLAG	with	fixed‐grid	and	Figure	6	for	FLAG	with	box‐
grid	at	t	=	0.3	μs.		Both	solutions	have	the	qualitatively	correct	behavior,	though	
significant	noise	is	apparent	in	the	solution.		The	suspicion	is	that	this	is	
symptomatic	of	the	non‐flow	aligned	mesh	and	the	first	order	shock	capturing	
hydro.			The	magnetic	fields	are	also	computed	through	a	least‐squares	from	the	
underlying	magnetic	flux	through	“surface	facets”.			This	may	introduce	numerical	
noise	that	might	be	expected	to	be	reduced	under	mesh	refinement.			However,	the	



FLAG	results	were	unexpectedly	unstable	under	mesh	refinement	for	this	problem.			
This	may	be	caused	by	poor	time‐step	controls	for	MHD	in	FLAG.				Figure	7	shows	
the	results	for	FLAG	with	axis2‐grid	under	mesh	refinement.		The	solutions	here	
appear	to	be	converging	to	the	analytic	solution.		Finally,	Figure	8	shows	the	
solutions	from	ATHENA,	which	appear	to	have	excellent	agreement	with	the	analytic	
solution.	
	
	
Magnetic	Noh	Problem	2:	
	
This	problem	includes	a	z‐component	of	magnetic	field	along	with	different	initial	
conditions	from	Problem	1.		Figure	9	and	Figure	10	presents	the	solution	at	t	=	0.3	
μs	results	for	FLAG	fixed‐grid	and	FLAG	box‐grid	respectively.	Problem	2	was	the	
easiest	for	FLAG	to	deal	with	in	the	box‐grid	configuration.		An	artifact	at	the	origin	
for	Bz	and	pressure	is	unclear.		Bz	is	just	threading	the	domain	more	or	less	
uniformly	and	the	origin	is	not	special	for	Bz.	Convergence	is	clearly	not	complete	‐‐	
especially	at	the	origin	and	at	the	shock.		Figure	11	shows	the	results	of	a	similar	set	
of	calculations	for	FLAG	axis2‐grid	Only	Ncells	=	50	and	100	(red	and	green)	have	
been	computed.	The	solutions	show	convergence	to	the	analytic	under	radial	mesh	
refinement	and	the	shock	is	again	in	the	correct	location,	r	=	0.3	cm.	FLAG	axis2‐grid	
appears	to	also	have	the	greatest	error	in	the	pressure	at	the	origin.	This	may	be	
related	to	the	well‐known	errors	in	calculating	strong	shock	solutions	(Ref.[4]).	
Further	investigation	is	warranted	since	the	sound	speed		~	√p/ρ	in	cell	next	to	the	
origin	limits	the	time	step	for	the	over	the	duration	of	the	calculation	which	leads	to	
single‐processor	run	times	in	excess	of	five	hours	for	Ncells	=	100.		This	can	be	
partially	remedied	by	moving	to	ratio	zoning	or	equal	mass	zoning	though	the	
impact	on	the	MHD	solution	is	presently	unknown.		Finally,	Figure	12	shows	the	
solutions	from	ATHENA,	which	again	appear	to	have	excellent	agreement	with	the	
analytic	solution.	

	
Magnetic	Noh	Problem	3:	
	
Problem	3	is	similar	to	Problem	2,	but	has	a	very	soft	equation	of	state	with	=1.1	
and	high	Alfvenic	Mach	number	(v/v_A).		Figure	13	and	Figure	14	present	the	
solution	at	t	=	0.3	μs	results	for	FLAG	fixed‐grid	and	FLAG	box‐grid	respectively.	
These	solutions	were	unstable	and	comparison	with	the	analytic	solutions	was	
largely	meaningless.		Surprisingly,	the	FLAG‐axis2	solutions	presented	in	Figure	15	
agree	nominally	well	with	the	analytic	solution.		If	Problem	3	is	actually	physically	
unstable,	this	might	be	expected	in	that	axis‐2	is	effectively	1	dimensional	and	
would	not	be	prone	to	seeding	of	instabilities	due	to	misalignment	of	flow	and	field.	
Fixed‐grid	and	box‐grid	would	be	prone	to	the	seeding	of	instabilities.		A	converged	
accurate	solution	was	achieved	with	ATHENA	as	presented	in	Figure	16.	Athena	was	
able	to	achieve	accurate	solution	with	some	degree	of	grid‐scale	viscosity	and	
resistivity.	The	ideal	version	of	the	code	gave	relative	errors	of	order	~0.3	which	
were	only	slowly	decreasing	with	increasing	resolution.	Solution	convergence	for	



Problem	3	for	ideal	version	of	Athena	is	presented	on	Fig.	19.	The	convergence	is	
evidentially	very	slow.	When	Athena	is	additionally	stabilized	with	viscosity	and	
magnetic	diffusivity	(Prm	=1,	ν=νm	~	dx)	the	solution	is	more	accurate	(Fig.	20).	

	
Conclusion	

	
	
In	the	course	of	running	the	first	and	second	magnetic	Noh	problems,	bugs	in	coding	
were	exposed	that	caused	the	results	to	deviate	from	the	analytic	solution.	The	
coding	has	been	corrected.		Furthermore,	at	the	time	of	these	simulations,	only	a	
high	order	advection	scheme	had	been	implemented.		Such	schemes	are	known	to	
be	problematic	in	the	presence	of	shocks.			A	low	order	scheme	has	since	been	
implemented	(in	2D)	and	a	plan	is	underway	to	combine	the	low	order	and	high	
order	solutions	into	an	FCT	approach.			The	advection	scheme	may	also	need	
improvement	to	maintain	local	Divergence	B	=	0.		
	
In	the	current	configuration	the	FLAG	solution	becomes	numerically	unstable	at	
sufficiently	high	resolution	for	all	three	test	problems.			Timestep	controls	for	the	
MHD	package	may	be	the	culprit.			ATHENA	solutions	are	in	very	good	agreement	
with	the	analytic	solutions,	though	Problem	3	required	the	introduction	of	
additional	dissipation.		Concern	exists	that	Problem	3	may	be	physically	unstable.				
Problems	1	and	2	with	FLAG	qualitatively	match,	but	more	work	is	needed	to	reach	
accurate,	quickly	converging	solutions.			Problem	3	seems	to	present	a	serious	
problem	for	FLAG.						
	
The	goal	of	this	collaboration	was	to	provide	a	mechanism	to	verify	the	MHD	
implementation	in	FLAG	and	improve	the	FLAG	MHD	packages	as	need	to	meet	
broader	LANL	institutional	goals.		These	three	Magnetic	Noh	problems	are	proving	
immensely	useful.		
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(a) 																																																																								(b)	

	
(c)	

	
	
	
Figure	1.			Initial	mesh	for	box‐grid	(a),	fixed‐grid	(b),	and	axis2‐grid	(c).		In	
both	box‐grid	and	fixed‐grid	the	Bz	field	is	out	of	the	plane	and	the	B	field	is	
in	the	plane	of	the	mesh.		Here,		(a)	is	only	the	upper	quarter	octant,	though	
the	solution	is	on	the	full	cross‐section.		Axis‐2	has	Bz	field	is	in	the	plane	of	
the	mesh	and	B	field	is	normal	to	the	plane	of	the	mesh.		For	Axis‐2,	Problem	
3	both	uniform	and	ratio	zone	meshes	were	considered.		Ratio	zoning	was	
advantageous	due	to	the	low	density	at	the	center	of	the	problem.	
	
	
	



	
	

(a)	

	

(b)	
	

Figure	2.	Density	profile	for	Problem	1	at		t	=	0.3	μs	with	Fixed‐Grid	(a)	and	
Box‐Grid	(b)	is	observed	to	be	symmetric.		Some	m=4	and	m=8	artifacts	are	
observed	internal	to	the	shock.	

	
	



	
(a)	

	
(b)	
	
	
	

Figure	3.		Density	profile	for	Problem	2	at		t	=	0.3	μs	fixed‐grid	(a)	and	box‐grid	
(b)	has	no	observable	mesh	imprinting.	
	
	
	
	
	
	



	
(a)	

	
	

(b)	
	

Figure	4.	Pressure	profiles	for	Problem	3	at		t	=	0.3	μs	with	fixed‐grid	(a)	and	
box‐grid	(b).	Numerical	instability	develops	inside	(a)	and	outside	(b)	of	the	
domain	of	shocked	gas.	



	
	

Figure	5.	Problem	1	with	FLAG	fixed‐grid	(red	‐	analytical,	green	–	numerical)	
has	a	qualitatively	correct	behavior.	



	
	
Figure	6.	Problem	1	with	FLAG	box‐grid		(red	‐	analytical,	green	–	numerical)	
has	a	qualitatively	correct	behavior.			A	bug	was	identified	in	the	output	of	
velocity	in	the	upper	quadrant	that	has	since	been	resolved.	

	



	
	

Figure	7.	Problem	1	with	FLAG	Axis2‐grid	(cylindrical)	results	at	t	=	0.3	μs	
under	radial	mesh	refinement	converges	to	the	analytic	solution.	A	series	of	
calculations	at	successively	higher,	initial	radial	mesh	resolution	are	run.	Ncells	
=	50,	100,	200,	500	are	evenly	distributed	over	0.0	<	r	<	3.0.	The	code	is	run	in	
pure	Lagrangian	mode	without	ALE.	By	inspection,	the	solution	appears	to	be	
converging	to	the	analytic	solution	for	the	quantities,	density,	velocity,	
magnetic	field,	and	pressure	and	the	shock	location	is	nominally	located	at	r	=	
0.3	cm.	

	
	
	
	
	
	
	
	
	
	
	
	



	
	
Figure	8.	Problem	1	with	ATHENA	(fixed‐grid)	agrees	with	analytic	solution.	

	
	
	
	



	
Figure	9.	Fixed	grid,	Problem	2.	

	
	
	
	
	



	

(a)	

	

(b)	
Figure	10.	Problem	2	FLAG	box‐grid	at	(a)	coarse	resolution	and	(b)	under	
mesh	refinement	suggesting	convergence.				Numerical	artifact	exists	on	axis,	
including	wall	heating	(See	Ref.[4]).	



	

	

	
	

	
Figure	11.	Problem	2	FLAG	Axis2‐grid	(Cylindrical)	results	under	radial	mesh	
refinement	suggest	radial	convergence.	The	red	profiles	are	for	Ncells		=	50.	The	
green	are	for	Ncells	=	100.	The	blue	profiles	are	the	analytic	solutions.		

	

	
	



	
	

Figure	12.	Problem	2	ATHENA	fixed‐grid	solution	shows	excellent	agreement	
with	the	analytic	solution.	

	
	
	
	
	
	
	
	



	

	
Figure	13.	Problem	3	FLAG	fixed‐grid	solution	does	not	agree	with	the	analytic	
solution.		The	solution	was	observed	to	be	unstable.	

	



	
Figure	14.	Problem	3	FLAG	box‐grid	does	not	agree	with	the	analytic	solutions.		
The	solution	was	observed	to	be	unstable.		

	
	

	
	



	
	
Figure	15.	Problem	3	FLAG	axis2‐grid	(cylindrical)	with	ratio	grid	setup.	
Increasing	the	parameter,	0.950	<	alf	<	0.985,	effectively	refines	the	grid.			
Nominal	convergence	to	the	analytic	solution	is	seen.	However,	progressively	
higher	mode	oscillations	behind	the	shock	are	also	observed	with	increasing	
alf,	suggesting	the	potential	for	instability.		



	
(a)	

	
(b)	

	

Figure	16.	Problem	3,	ATHENA	fixed‐grid		solution	for	(a)	low	resolution	and	
(b)	under		mesh	refinement	has	nominal	agreement	with	analytic	solution.	
Some	suggestion	of	instability	exists.	

	



	
Figure	17.	Problem	3	ATHENA	fixed‐grid	instability	is	stabilized	with	grid‐
scale	viscosity	and	magnetic	diffusivity	of	2nd	order.	

	
	

	


